• На главную
  • Структура портала
  • Новости экологии

Главное меню

  • Главная
  • Новости
  • Экология окружающей среды
  • Экология сегодня
  • Аспекты экологической политики

Полезно знать

  • Проблемы Мирового океана
  • Проблема загрязнения
  • Природные ресурсы России
  • Природные воды
  • Почва как экологический фактор

Природа вокруг нас сказочна и богата...

Зарождение и развитие эволюционной идеи.

На следующей стадии химической эволюции появились мат­рицы, определявшие последова­тельность молекул т-РНК, а тем самым и последовательность аминокислот, которые связы­ваются молекулами т-РНК.

Способность нуклеиновых кислот служить матрицами при образовании компле­ментарных цепей (например, синтез и-РНК на ДНК) — наиболее убедительный аргумент в пользу пред­ставлений о ведущем значении в процессе биогенеза наслед­ственного ап­парата и, следова­тельно, в пользу генетической гипотезы происхождения жизни.

Основные этапы биогенеза. Процесс биогенеза включал три основных этапа: воз­никновение органических веществ, появле­ние сложных полимеров (нуклеиновых кислот, белков, поли­сахаридов), образование первичных живых организмов.

Первый этап — возникновение органических веществ. Уже в период формирования Земли образовался значительный запас абиогенных органических соединений. Исход­ными для их синтеза были газообразные продукты докислородной атмосферы и гидро­сферы (СН4, СО2, H2О, Н2, NH3, NО2). Именно эти продукты используются и в искус­ственном синтезе орга­ни­ческих соединений, составляющих биохимическую основу жизни. Экспериментальный

синтез белковых компонентов — аминокислот в попытках создать живое «в про­бирке» на­чался с работ С. Миллера (1951—1957). С. Миллер провел серию опытов по воздействию искровыми электрическими разрядами на смесь га­зов СН4, NH3, H2 и па­ров воды, в резуль­тате чего обнаружил аминокислоты аспарагин, глицин, глутамин. По­лученные Милле­ром данные подтвердили советские и зарубежные ученые.

Наряду с синтезом белковых компонентов экспериментально синтезированы нук­леиновые компоненты — пуриновые и пиримидиновые основания и сахара. При умерен­ном нагрева­нии смеси цианистого водорода, аммиака и воды Д. Оро получил аденин. Он же синтезиро­вал урацил при взаимодействии аммиачного раствора мочевины с соедине­ниями, возни­кающими из простых газов под влиянием электрических разрядов. Из смеси метана, ам­миака и воды под действием ионизирующей радиации обра­зовывались угле­водные компо­ненты нуклеотидов — рибоза и дезоксирибоза. Опыты с применением ультрафиолетового облуче­ния показали возможность синтеза нуклеотидов из смеси пу­риновых оснований, ри­бозы или дезоксирибозы и полифос­фатов. Нуклеотиды, как из­вестно, являются мономерами нуклеи­новых кислот.

Второй этап — образование сложных полимеров. Этот этап возникновения жизни характе­ризовался абиогенным синтезом полимеров, подобных нуклеиновым кислотам и белкам.

С. Акабюри впервые синтезировал полимеры протобелков со случайным располо­жением аминокислотных остатков. Затем на куске вулканической лавы при нагревании смеси ами­нокислот до 100°С С. Фоке получил полимер с молекулярной массой до 10000, содержащий все включенные в опыт типичные для белков аминокислоты. Этот полимер Фоке назвал протеиноидом.

Искусственно созданным протеиноидам были характерны свой­ства, присущие бел­кам со­временных организмов: повторяющая­ся последовательность аминокислотных ос­татков в первичной структуре и заметная ферментативная активность.

Полимеры из нуклеотидов, подобные нуклеиновым кислотам организмов, были синтезиро­ваны в лабораторных условиях, не воспроизводимых в природе. Г. Корнберг показал воз­можность синтеза нуклеиновых кислот in vitro; для этого требовались специ­фические фер­менты, которые не могли присутствовать в условиях примитивной Земли.

В начальных процессах биогенеза большое значение имеет химический отбор, ко­торый яв­ляется фактором синтеза простых и сложных соединений. Одной из предпосы­лок химиче­ского син­теза выступает способность атомов и молекул к избирательности при их взаимо­действиях в реакциях. Например, галоген хлор или неорганические ки­слоты предпочитают соединяться с лег­кими металлами. Свойство избирательности оп­ределяет способ­ность мо­лекул к самосборке, что было показано С. Фоксом в сложных макромолекул характеризуется строгой упорядоченностью, как по числу мономеров, так и по их пространствен­ному распо­ложению.

Способность макромолекул к самосборке А. И. Опарин рас­сматривал в качестве доказатель­ства выдвинутого им положе­ния, что белковые молекулы коацерватов могли синтезиро­ваться и без матричного кода.

Третий этап — появление первичных живых организмов. От простых углеродистых соеди­нений химическая эволюция при­вела к высокополимерным молекулам, которые составили основу формирования примитивных живых существ. Переход от хими­ческой эволюции к биологической характеризовался появлением новых качеств, отсутствующих на химическом уровне развития материи. Главными из них были внутренняя организация протобионтов, приспособленная к окружающей среде благодаря ус­тойчивому обмену веществ и энергии, наследование этой орга­низации на основе репликации генетического аппарата (матрич­ного кода).

Перейти на страницу: 1 2 3 4

2025 - Все права защищены - www.naturetooday.ru